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Figure 1. Provided with six surrounding images captured in real world or synthesized by 2D diffusion models, we can generate high-quality
3D Gaussians based on our Omni-Gaussian representation for ego-centric scene reconstruction and novel view synthesis.

Abstract

Prior works employing pixel-based Gaussian representa-
tion have demonstrated efficacy in feed-forward sparse-
view reconstruction. However, such representation necessi-
tates cross-view overlap for accurate depth estimation, and
is challenged by object occlusions and frustum truncations.
As a result, these methods require scene-centric data acqui-
sition to maintain cross-view overlap and complete scene
visibility to circumvent occlusions and truncations, which
limits their applicability to scene-centric reconstruction. In
contrast, in autonomous driving scenarios, a more practical
paradigm is ego-centric reconstruction, which is character-
ized by minimal cross-view overlap and frequent occlusions
and truncations. The limitations of pixel-based represen-
tation thus hinder the utility of prior works in this task.
In light of this, this paper conducts an in-depth analysis
of different representations, and introduces Omni-Gaussian
representation with tailored network design to complement
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their strengths and mitigate their drawbacks. Experiments
show that our method significantly surpasses state-of-the-
art methods, pixelSplat and MVSplat, in ego-centric recon-
struction, and achieves comparable performance to prior
works in scene-centric reconstruction.

1. Introduction

Reconstructing 3D scenes from sparse observations is a cru-
cial task in computer vision and graphics. Recent efforts
[1–22] have integrated 3D structural priors as inductive bi-
ases into neural networks, enabling the prediction of im-
plicit neural field [23], light field [10], or explicit 3D Gaus-
sians [24] for scene reconstruction in a single forward pass.
Notably, due to the efficiency of rasterization-based render-
ing and the explicit nature of 3D Gaussians [24], Gaussian-
based methods [13–22] have shown superiority in both in-
ference speed and visual quality compared to those based
on neural field [1–9] or light field [10–12]. Typically, these
methods assume existence of large overlaps among the ob-
served input views. Thus they can utilize techniques such as
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Figure 2. Illustration of our Omni-Gaussian representation. Our Omni-Gaussian incorporates two representations, pixel-based and volume-
based Gaussians. In (a), we illustrate bad cases when relying solely on one representation (i.e., Case 1 and 2 for pixel-based, Case 3 and
4 for volume-based), and how we use the other one to compensate for the shortcomings. In (b)-(e), we present examples of these cases
under the task of ego-centric driving scene reconstruction. Green dashed lines denote areas plausibly rendered in novel views, while red
ones highlight undesirable artifacts due to weaknesses of pixel-based or volume-based Gaussian. We can observe that Omni-Gaussian
leveraging the complementary nature of the two representations can achieve optimal results for all cases.

multi-view cross attention [16, 18, 22], epipolar lines [13]
or cost volumes [14, 21] to learn pixel-level cross-view cor-
relation, and then infer per-pixel depths with proper scales.
Hence they can further predict per-pixel Gaussians and use
depths to unproject them to 3D along pixel rays for scene
reconstruction. A common feature for all of these methods
is the use of pixel-based Gaussian representation.

Although works utilizing the pixel-based Gaussian rep-
resentation have achieved great success, they pose strong
hypothesis regarding the existence of large overlaps among
input views. This implies the necessity of capturing input-
view images encircling the scene. Otherwise, they would
fail to predict accurate per-pixel depths due to the scale
ambiguity [13]. In contrast to such scene-centric recon-
struction, a more practical case especially for autonomous
driving systems, is ego-centric reconstruction, where we
can only acquire input views from cameras rigidly mounted
around the car, with minimal overlaps (<15%) existing only
between adjacent cameras. As evident in Sec.4.2, previous
methods with pixel-based representation would fail for ego-
centric reconstruction. Despite the difficulty in predicting
per-pixel depths, their failure can be attributed to two un-
derlying weaknesses inherent in the pixel-based represen-
tation as showcased by Case 1 and 2 in Fig.2. In Case 1,
when object in the target novel view is occluded in the in-
put view (e.g., tree behind the car in Fig.2(a)), pixel-based
representation can only rely on 2D local features of the non-
occluded object for inferring the occluded one, which fails
especially when their appearances are far different from
each other. In Case 2, when object in the novel view falls
outside of the input view frustum (e.g., top of the streetlight
in Fig.2(a)), pixel-based representation cannot predict posi-
tions of Gaussians through unprojection along pixel rays.

These two cases also pose challenges for 3D percep-
tion tasks like 3D object detection [25–27] and occupancy

prediction [28–30], which require to perceive partially oc-
cluded or truncated objects. Existing 3D perception works
resort to volume-based representations like bird’s eye view
(BEV) grids [25–27] and 3D voxels [28–30] as the solu-
tion. Since volume is spatially-continuous in 3D space,
contents absent in the 2D inputs can be supplemented by
their neighbors at the 3D level. Besides, with camera pro-
jection knowledge to enable 3D-to-2D cross attention [25],
we can directly lift 2D features to 3D space instead of re-
lying on cross-view overlap for depth-based 2D-to-3D un-
projection. Intuitively, we conjecture that we can utilize a
volume-based Gaussian representation in the reconstruction
task (i.e., represent Gaussians with voxels in the volume) to
minimize dependence on cross-view overlap and mitigate
bad effects brought by occlusions and truncations. How-
ever, as illustrated by Case 3 and 4 in Fig.2, this representa-
tion also has drawbacks. Due to the bounded nature of vol-
ume (i.e., bounded within the range of H×W×Z around
the car), volume-based Gaussian cannot reconstruct ele-
ments far away from the car (e.g., sky in Case 3 of Fig.2(a)).
Besides, encoding features for a volume with cubic com-
plexity limits the volume resolution, potentially resulting in
the lack of details (e.g., house in Case 4 of Fig.2(a)).

In this paper, considering limitations of pixel and
volume-based Gaussians, we propose Omni-Scene, which
employs Omni-Gaussian representation and tailored net-
work designs to reach the best of both worlds. The core
lies in how to optimize volume and pixel-based Gaus-
sians to their full potential, and leverage their unique at-
tributes to enable their collaboration. Specifically, for
volume-based Gaussian, we propose Volume Builder com-
posed of Triplane Transformer and Volume Decoder to re-
construct coarse 3D structures with voxel-anchored Gaus-
sians. In particular, our Triplane Transformer uses tri-
plane as a light-weight alternative of volume, where we
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employ cross-image and cross-plane deformable attentions
to enhance volumetric feature encoding. For pixel-based
Gaussian, we propose Pixel Decorator, which complements
volume-based Gaussian with distant elements and better de-
tails. Our Pixel Decorator comprises Multi-View U-Net and
Pixel Decoder, responsible for cross-view attended feature
extraction and per-pixel Gaussian prediction, respectively.
To enable collaboration between the two representations,
we introduce Projection-Based Feature Fusion and Depth-
Guided Training Decomposition for their seamless fusion
and better complementarity, thereby boosting the perfor-
mance. In summary, our main contributions are as follows:
• We propose Omni-Scene, an Omni-Gaussian representa-

tion with tailored network design for ego-centric recon-
struction, taking advantages of both pixel and volume-
based representations while eliminating their drawbacks.

• We introduce a novel ego-centric reconstruction task to a
popular driving dataset (i.e., nuScenes [31]), with the aim
of scene-level 3D reconstruction and novel view synthesis
given only single-frame surrounding images. We hope
this can facilitate further research in this field.

• Experiments show that our method significantly outper-
forms state-of-the-art feed-forward reconstruction meth-
ods including pixelSplat [13] and MVSplat [14] on the
ego-centric task. We also achieve competitive perfor-
mance with prior works on the scene-centric task per-
formed on RealEstate10K dataset [32].

2. Related Work
Neural Reconstruction and Rendering. Recent ap-
proaches [23, 24, 33–37] leveraging neural rendering and
reconstruction techniques can model scenes as learnable 3D
representations, and achieve 3D reconstruction and novel
view synthesis through iterative back propagation. NeRF
[23] has been recognized for its ability to capture high-
frequency details in reconstructed scenes. However, it re-
quires dense queries for each ray during rendering, which,
despite subsequent efforts for acceleration [34, 35], still re-
sults in high computational demand that limits its real-time
capability. 3D Gaussian Splatting (3DGS) [24] mitigates
this issue by explicitly modeling scenes with 3D Gaus-
sians and employing an efficient rasterization-based render-
ing pipeline. Although 3DGS and NeRF, along with their
variants [33, 36, 38, 39], have demonstrated superior perfor-
mance in single-scene reconstruction, they usually require
per-scene optimization and dense scene captures, making
the reconstruction process time-consuming and unscalable.
Different from these works, our method can reconstruct 3D
scenes from sparse observations in a single forward pass.
Feed-Forward Reconstruction with Implicit 3D Repre-
sentations. This line of works incorporate implicit 3D pri-
ors, such as NeRF [23] or light field [10], into their networks
to achieve feed-forward reconstruction. NeRF-based meth-

ods [1–9] leverage transformers with multi-view cross at-
tentions [8, 16, 18, 22], or employ projective 3D priors like
epipolar lines [1–3, 13] and cost volumes [4–7, 14, 21] to es-
timate radiance fields for reconstruction, which inherits the
expensive ray querying process of NeRF rendering. Con-
sequently, these methods are exceedingly time-consuming
during both training and inference phases. In contrast, light
field-based approaches [10–12] can bypass NeRF render-
ing by directly regressing per-ray colors based on ray-to-
image cross attentions, which sacrifices interpretability for
efficiency. However, due to the lack of interpretable 3D
structure, they fail to reconstruct 3D geometries of scenes.

Feed-Forward Reconstruction with 3D Gaussians. Re-
cent methods [13–22] utilizing 3DGS can achieve both in-
terpretability and efficiency. Typically, they adopt 3D priors
akin to NeRF-based methods (e.g., epipolar lines [13], cost
volumes [14, 21] and multi-view cross attentions [16, 18,
22]) into their networks, and employ pixel-based Gaussian
representation to predict per-pixel Gaussians along the rays
for reconstruction. However, such pixel-based representa-
tion depends on large cross-view overlap to predict depths,
and suffers from object occlusion and frustum truncation,
thus only suits for scene-centric reconstruction with lim-
ited applicability. In contrast, this paper concentrates on
ego-centric reconstruction, which is characterized by mini-
mal cross-view overlap and frequent occurrences of object
occlusion and frustum truncation. This has motivated our
research into a novel 3D representation that is not overly
dependent on cross-view overlap, and can address the limi-
tations of pixel-based representation in the meantime.

Neural Representation in 3D Perception. Similar to
3D reconstruction from multi-view images, 3D perception
works [25–30, 40] also utilize multi-view images as input
and perform 3D perception tasks like 3D detection [25–27],
map segmentation [25, 26, 40], and 3D occupancy predic-
tion [28–30]. Early 3D perception attempts [26, 27, 40]
like Lift-Splat-Shoot (LSS)[40] employ pixel-wise depths
to unproject pixel-wise features to 3D along camera rays,
and project them onto BEV plane to enable 3D-level esti-
mation. Similar to pixel-based representation in 3D recon-
struction, such pixel-based approach would fail in cases of
object occlusion. Recent 3D perception methods [25, 28–
30] manage to bypass pixel-wise unprojection that sensi-
tive to occlusion. In particular, they directly encode feature
at 3D level by employ volume-based representation (e.g.,
BEV grids [25] or 3D voxels [28–30]), and achieves bet-
ter performance especially when some of the objects are
occluded by those closer to the camera. Although these
methods show potential to accurate 3D perception, the per-
ception task itself is much more coarse-grained compared
to 3D reconstruction task, making low-resolution volume
sufficient for perception-oriented feature modeling. In con-
trast, this paper focuses on 3D reconstruction task that re-
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Figure 3. Overview. (a) Obtain images {Ii}Ki=1 from surrounding cameras with minimal overlap (e.g., adjacent image areas enclosed
by green rectangles) in a single frame, and extract 2D features using image backbone. (b) For Volume Builder, we first use Triplane
Transformer to lift 2D features {F i}Ki=1 to 3D volume space compressed by three orthogonal planes, where we employ cross-image
and cross-plane deformable attentions to enhance feature encoding. Then, Volume Decoder takes voxels as anchors, and predict nearby
Gaussians GV for each voxel given features sampled from the three planes through bilinear interpolation. (c) For Pixel Decorator, we
use Multi-View U-Net to propagate information across views and extract multiple 2D features for Pixel Decoder to predict pixel-based
Gaussians GP along rays. Through Volume-Pixel Collaborations including Projection-Based Feature Fusion and Depth-Guided Training
Decomposition, we can make GV and GP complement for each other, and obtain the full Omni-Gaussians G for novel-view rendering.

quires fine-grained feature modeling, which exceeds the ca-
pability of volume representation.

3. Method

The overall pipeline of Omni-Scene, a feed-forward ap-
proach to ego-centric sparse-view reconstruction, is shown
in Fig.3. As depicted in Fig.3(a), we accept K surround-
ing images I = {Ii}Ki=1 as inputs, which are captured or
synthesized within a single frame. We utilize a ResNet-
50 [41] backbone pre-trained with DINO objective [42] to
extract 4× downsampled features F = {F i}Ki=1 for I.
Then, as detailed in Fig.3(b)-(c), the features are shared and
fed into our Volume Builder (Sec.3.1) and Pixel Decorater
(Sec.3.2) to predict volume-based Gaussians GV and pixel-
based Gaussians GP , respectively. Utilizing Volume-Pixel
Collaboration designs (Sec.3.3) including Projection-Based
Feature Fusion and Depth-Guided Training Decomposition,
we enable feature interaction between GV and GP , and dis-
tinguish their attributes during training. By fusing GV and
GP , we can obtain Omni-Gaussians G for reconstruction.

3.1. Volume Builder

Our Volume Builder aims to predict coarse 3D structures
with volume-based Gaussians. The primary challenge is
how to lift 2D multi-view image features to the 3D volume
space without explicitly maintaining dense voxels. We ad-
dress this using Triplane Transformer. Then, Volume De-
coder is proposed to predict voxel-anchored Gaussians GV .
Triplane Transformer. Representing volume as voxels and
encoding features for each is expensive due to the cubic

complexity of H×W×Z. Therefore, we resort to triplane
to disentangle volume into three axis-aligned orthogonal
planes HW , ZH and WZ. Some object-level 3D recon-
struction works [8, 43, 44] also adopt triplane represen-
tation to compress volume. However, they either rely on
dense per-pixel cross attention between triplanes and im-
ages [43, 44], or require input images to be also axis-aligned
with triplanes [8] for direct 2D-level feature encoding. Nei-
ther of them is suitable for real-world scenes with much
larger volume scales and unconstrained data collection.

Inspired by recent 3D perception methods [25, 30] that
replace global full-image attention with local deformable
attention to efficiently lift information from 2D to 3D, our
Triplane Transformer also utilize deformable attention to
enable sparse but effective spatial correlations between 2D
and 3D spaces. Here we take the feature encoding of HW
plane as an example for explanation. As shown in Fig.3(b),
we define a group of grid-shaped learnable embeddings
QHW ∈ RH×W×C as the plane queries of transformer,
where C denotes the embedding channels. Then, for query
qh,w positioned at (h,w), we expand it to multiple 3D pillar
points evenly spread along the Z axis, and calculate their
reference points Ref2Dh,w in 2D space by projecting them
back to the input views. Due to the sparse nature of such
perspective projection, only the most relevant 2D features
from 1∼2 input views will be attended for qh,w, balancing
efficiency and feature expressiveness. The above operation,
namely Cross-Image Deformable Attention (CIDA), is de-
noted by purple dashed arrows in Fig.3(b). We derive it as
follows:

qCIDA
h,w =

1

K′

K′∑
i=1

DA(qh,w,Ref2Dh,w,i,F i), (1)
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where K ′, Ref2Dh,w,i, DA represent the number of correlated
views, 2D reference points in the i-th correlated view and
deformable attention function, respectively.

Considering query pillar points might be occluded or
located beyond the frustum range for any of the input
views, we further utilize Cross-Plane Deformable Atten-
tion (CPDA) to enrich these points with cross-plane con-
text. In particular, for query qh,w, we project its co-
ordinate (h,w) onto the HW , ZH and WZ planes
to obtain three sets of reference points Ref3Dh,w =

RefHW
h,w ∪ RefZH

h,w ∪ RefWZ
h,w . Here, RefHW

h,w denotes
neighbors of qh,w within the HW plane. RefZH

h,w and
RefWZ

h,w are orthogonal projections onto the ZH and WZ
planes, derived from pillar points of (h,w) evenly sampled
along the Z axis. Utilizing Ref3Dh,w, we extract contextual
information from different planes, thereby enhancing the
features as denoted by red dashed arrows in Fig.3(b). We
derive it as follows:

qCPDA
h,w = DA(qh,w,Ref3Dh,w,QHW,QZH,QWZ), (2)

where QZH ,QWZ denote queries of the other two planes.
Repeating these two cross attentions for queries of all

the planes, we can obtain triplane feature with rich semantic
and spatial context without dependency on cross-view over-
lap, which is necessary for previous approaches [13, 14] that
solely relied on pixel-based Gaussian representation.
Volume Decoder. Our Volume Decoder is then proposed
to estimate voxel-anchored Gaussians. Specifically, given
a voxel located at (h,w, z), we first project its coordinate
onto the three planes to obtain plane features through bilin-
ear interpolation, which is followed by plane-wise summa-
tion to derive the aggregated voxel feature fh,w,z . Then,
we append three linear layers to fh,w,z to predict param-
eters (δv,αv, sv, qv, cv)}Vv=1 for V Gaussians {Gv}Vv=1.
Each gaussian Gv is anchored near (h,w, z) and shifted to
a new position µv according to the offset δv ∈ R3. The
remaining parameters αv , sv , qv , cv denote opacity, scale,
rotation quaternion and RGB color, respectively. The same
operation is repeated for all the voxels to obtain our volume-
based Gaussians GV ∈ RH×W×Z×V×D, where D is the
dimension of Gaussian paramters.

3.2. Pixel Decorator

Our pixel decorator consists of Multi-View U-Net and Pixel
Decoder, responsible for extracting cross-view correlated
features and predicting pixel-based Gaussians GP , respec-
tively. Since GP is obtained in alignment with fine-grained
image space, it can add details to coarse voxel-anchored
Gaussians GV . Besides, since GP can be unprojected to
positions at infinite distance, it can supplement volume-
bounded GV with distant Gaussians.
Multi-View U-Net. The Multi-View U-Net concate-
nates image features {F i}Ki=1 and Plücker ray embeddings

{Si}Ki=1 as inputs, where {Si}Ki=1 can provide additional
camera pose information [16]. Inspired by the patchified to-
ken compression introduced by a recent 2D diffusion trans-
former method [45], we apply patchified cross attentions to
our Multi-View U-Net for efficient cross-view correlation as
shown in Fig.3(c). Then, we can obtain 3D-aware features
{F̂

i
}Ki=1 for each input view to decode Gaussians.

Pixel Decoder. Our Pixel Decoder first upsamples the
U-Net features {F̂

i
}Ki=1 to the original image resolution

through bilinear interpolation, followed by several convo-
lution layers to decode per-pixel depth dp and Gaussian pa-
rameters (δp,αp, sp, qp, cp) for each Gaussian Gp. To ob-
tain the center position µp, we first use dp to unproject the
pixel from the ray origin op to a coarse position along the
ray direction rp, and then refine it with the learned offset
δp∈R3. The unprojection process is derived as follows:

µp = op + dp·rp + δp. (3)

Moreover, compared to predicting dp from scratch, we find
replacing it with the noisy estimation of a 2D foundation
model [46] is beneficial for the performance, demonstrating
the importance of Gaussian initialization [24]. By doing
the same to pixels of all the input views, we can obtain the
pixel-based Gaussians GP ∈ RK×R×D, where R is the total
number of rays in an input view.

3.3. Volume-Pixel Collaboration

The core of Omni-Gaussian representation lies in the col-
laboration of volume and pixel-based Gaussian representa-
tions. For this purpose, we propose a dual approach that en-
ables the collaboration from two aspects: Projection-Based
Feature Fusion and Depth-Guided Training Decomposition.
Projection-Based Feature Fusion. Our Volume Builder is
expected to predict Gaussians at positions occluded or trun-
cated in input views, which exceeds the design purpose of
Pixel Decorator. Therefore, to make Volume Builder aware
of where the occlusion or truncation occurs, we propose to
fuse the triplane queries QHW ,QZH ,QWZ with projected
features of pixel-based Gaussians GP . Taking the plane of
HW as an example, we first filter out Gaussians fallen be-
yond the volume range of H×W×Z for GP . Then, we col-
lect U-Net features for the remaining Gaussians of GP and
project them onto the HW plane. Features projected to the
same query positions are averaged pooled and added to the
corresponding query of QHW after a linear layer transfor-
mation. The same process is applied to the ZH and WZ
planes. We demonstrate in our experiments (Sec.4.3) that
such feature fusion facilitates a complementary interaction
between GV and GP , thereby enhancing performance.
Depth-Guided Training Decomposition. To further
strengthen the collaboration, we propose a Depth-Guided
Training Decomposition method to decompose our train-
ing objective based on the distinct spatial attributes of pixel
and volume-based Gaussians. Specifically, due to the lim-
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Figure 4. Comparisons on nuScenes [31]. Images of input views (Inputs) and ground-truth novel views (GTs) are outlined by orange and
blue rectangles, respectively. The remaining are generated novel views and depth maps (warmer colors denote greater distance while the
opposite for cooler colors). The red dashed circles denote undesirable artifacts, while the green ones denote plausibly-rendered areas.

ited volume range, GV is not supposed to reconstruct dis-
tant elements, which should be supplemented by GP that
has no distance limitation. To achieve that, we first use GP

to render depth maps D̂ = {D̂
i
}Ki=1 for all of the K in-

put views. Then, we obtain 3D positions for all the pix-
els by unprojecting them along ray directions according to
the estimated depths. By assigning pixels located within
the range of H×W×Z to 1, and assigning the remaining
pixels to 0, we can obtain masks M̂ = {M̂

i
}Ki=1. To

enable appropriate supervision for volume-based Gaussian,
we use M̂ to calculate masked photometric losses (i.e.,
mean squared error Lmse

V and LPIPS loss Llpips
V [47]) as

well as masked L1 depth loss Ldpt
V for input-view images

and depths rendered from GV , where only pixels with mask
values equal to 1 will be used for loss calculation. Note that
Ldpt
V denotes L1 errors between depths independently ren-

dered from GP and GV , which aims to align GP and GV to
the same scale, and requires no external depth signals for
supervision. Combining with the photometric losses Lmse

full

and Llpips
full for novel-view images rendered from our full

Gaussians G = GV ∪ GP , the overall training objective L
can be derived as follows:

L = Lmse
full + λ1L

lpips
full + λ2LV ,

LV = Lmse
V + λV1L

lpips
V + λV2L

dpt
V ,

(4)

where λ1 and λ2 are weights for LPIPS loss of G and com-
posite loss of GV , respectively. λV1

and λV2
are weights for

LPIPS and depth losses of GV , respectively.

4. Experiments

4.1. Experimental Setup

We conduct experiments for both ego-centric and scene-
centric sparse-view reconstruction tasks. The ego-centric
task is performed on nuScenes dataset [31], where the large
motions and dense traffics in driving scenes pose more chal-
lenges for reconstruction. The scene-centric task is per-

Dataset Method PSNR↑ SSIM↑ LPIPS↓ PCC↑

nusc [31]
pixelSplat [13] 21.51 0.616 0.372 0.001
MVSplat [14] 21.61 0.658 0.295 0.181
Ours 24.27 0.736 0.237 0.800

re10k [32]

AttnRend [12] 24.78 0.820 0.213 N/A
MuRF [9] 26.10 0.858 0.143 0.344
pixelSplat [13] 25.89 0.858 0.142 0.285
MVSplat [14] 26.39 0.869 0.128 0.363
Ours 26.19 0.865 0.131 0.368

Table 1. Quantitative results on nuScenes [31] and RealEstate10K
[32]. We bold 1st-place results and underline 2nd-place results.
PCC is not available (N/A) for light field-based method AttnRend
which has no interpretable 3D structure for depth rendering.

formed on RealEstate10K dataset [32] following protocols
presented in previous works [13, 14].
Ego-Centric Task. The nuScenes dataset comprises 700
scenes for training and 150 scenes for validation, with each
containing a video of approximately 20 seconds captured
at 12 Hz. We partition each scene into equally spaced bins
along the vehicle trajectories, with a 3.2m interval between
the first and the last captured frames. The central frame of
each bin, featuring 6 surround-view images, serves as in-
put views, while the first and the last frames, comprising 12
images, constitute the target novel views. Thus, we obtain
135,941 bins used for training and 30,080 bins for valida-
tion in total. We adopt the image resolution of 224×400
in our experiments for compatibility with the 2D diffusion
model [48]. For evaluation, we compare our method against
pixelSplat [13] and MVSplat [14], both are state-of-the-art
methods for feed-forward sparse-view reconstruction.
Scene-Centric Task. To further evaluate our method
against prior works, we also conduct experiments on
RealEstate10K, a large-scale scene-centric dataset contain-
ing both indoor and outdoor scenes. Following the proto-
cols adopted by previous works [13, 14], we use 67,477
scenes for training and 7,289 scenes for testing. For evalua-
tion, we conduct comprehensive comparisons with previous
methods including 3DGS-based pixelSplat [13] and MVS-
plat [14], light field-based AttnRend [12], and NeRF-based
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Figure 5. Comparisons on RealEstate10K [32]. The red dashed
circles denote undesirable artifacts, while the green ones denote
plausibly-rendered areas.

MuRF [9]. The results of these methods are adopted from
their papers directly.
Metrics. To measure visual quality, we use three met-
rics: peak signal-to-noise-ratio (PSNR), structural similar-
ity (SSIM) [49], and perceptual distance (LPIPS) [47]. For
PSNR and SSIM, larger values are preferable, whereas the
opposite for LPIPS. To further assess geometric quality of
3D scenes, we compare rendered depth maps of novel views
with those predicted by [50], which has been demonstrated
to produce highly accurate and robust depth predictions in
real-world scenarios. Since [50] can only obtain relative
depths without scales, we use Pearson Correlation Coeffi-
cient (PCC) [51] as the scale-invariant metric, which quan-
tifies the statistical relationship between any two variables.
The PCC ranges from -1 to 1, where -1 and 1 indicate per-
fect negative and positive relationships, respectively.
Implementation Details. By default, the volume size
H×W×Z is set to 192×192×16, corresponding to the real
world range of [-50m, -50m, -3m, 50m, 50m, 12m] around
the vehicle. The Triplane Transformer consists of three lay-
ers, with the first two incorporating both cross-image and
cross-plane deformable attentions, while the last layer fea-
turing only cross-plane deformable attention. The Volume
Decoder adopts three linear layers to decode Gaussian pa-
rameters for voxel features. For nuScenes dataset [31], our
model is trained on two A100 GPUs for 100,000 iterations
with the batch size of 4. For RealEstate10K dataset [32],
our model is trained on a single A100 GPU for 300,000 iter-
ations with the batch size of 8. The AdamW [52] optimizer
is adopted with the learning rate of 1× 10−4 following co-
sine learning rate decay strategy. More details can be found
in our supplementary material.

4.2. Main Results

Ego-Centric Reconstruction. For evaluation, we make
comparisons with state-of-the-art sparse-view reconstruc-
tion methods pixelSplat [13] and MVSplat [14] re-
implemented following their official code. They both adopt
pixel-based Gaussian as the representation. The quantitative
results are shown in Table 1. We can see that our method
significantly surpasses others in terms of all metrics, espe-
cially for PCC that measures the geometric quality. The

Method PSNR↑ SSIM↑ LPIPS↓ PCC↑
Volume-based 22.21 0.640 0.357 0.701
Pixel-based w/o depth init. 22.92 0.692 0.287 0.572
Pixel-based 22.89 0.698 0.290 0.780
Full w/o train decomp. 23.75 0.717 0.258 0.795
Full w/o feat fuse. 23.35 0.708 0.262 0.786
Full 24.27 0.736 0.237 0.800

Table 2. Ablations on nuScenes [31]. The 2nd to the 4th rows
show results of models with only singular representations (volume
or pixel-based Gaussian). The 5th to 7th rows show results of mod-
els with full Omni-Gaussian representation. Besides, “depth init.”,
“train decomp.” and “feat fuse.” denote components of Depth Ini-
tialization for pixel-based Gaussian, Depth-Guided Training De-
composition and Projection-based Feature Fusion, respectively.

main reason is that large cross-view overlap is unavailable
for ego-centric reconstruction. Other methods cannot pre-
dict accurate depths using pixel-level 3D priors (e.g., epipo-
lar lines [13] or cost volumes [14]) that are dependent on
cross-view correlation. Besides, the drawbacks of pixel-
based Gaussian also pose challenges for reconstruction. In-
stead, we utilize volume-based Gaussian to lift 2D features
to 3D space and predict Gaussians at the 3D level with-
out relying on cross-view overlap. Thanks to our dual-path
deformable attentions, we can further mitigate the spatial
limitations of pixel-based Gaussian during feature encod-
ing. The qualitative results are shown in Fig.4. We can
see that both pixelSplat and MVSplat fail to render plausi-
ble depths, causing blurriness or inconsistency with ground
truths in their results. In contrast, our method can generate
high-quality images and depths even if significant viewpoint
changes exist between the input and the novel views.
Scene-Centric Reconstruction. For evaluation, we com-
pare our approach with more baseline methods on a widely-
used scene-centric dataset (RealEstate10K [32]). As ev-
ident by the quantitative results in Table 1, our method
achieves comparable visual quality (measured by PSNR,
SSIM and LPIPS) to state-of-the-art methods, and outper-
forms all prior works in terms of geometric quality (mea-
sured by PCC). We also conduct qualitative comparisons
in Fig.5, where we can obtain novel views with better de-
tails than those produced by others, especially for cases of
large motions. Both of the quantitative and qualitative re-
sults show that our method not only exhibits superior per-
formance in ego-centric reconstruction but also possesses
competence in scene-centric reconstruction.
Multi-Modal Generation. Our Omni-Scene can not only
serve as a standalone reconstruction model, but also be
seamlessly integrated with a 2D diffusion model [48] to
achieve feed-forward text-to-3D or layout-to-3D scene gen-
eration. Specifically, given multi-modal conditions of tex-
tual descriptions or 3D layouts (e.g., 3D boxes, BEV map),
we utilize [48] to produce six single-frame surrounding im-
ages. Then, we can feed the images into our model to
generate the corresponding explorable 3D scene with ex-
plicit 3D Gaussians. The most relevant work to us is Mag-
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(a) Ours (Scene1): 3D boxes + BEV map + description of “Boston-seaport. Industrial, rainy, parking lot.”

(b) Ours (Scene2): 3D boxes + BEV map + description of  “Singapore-hollandvillage. Construction, sunny, intersection.”

(c) MagicDrive3D:

Seed 15

Seed 23

Seed 0

Seed 40

Sample 1

Sample 2

Figure 6. Multi-modal 3D scene generation. We accept multi-modal conditions (i.e., 3D boxes, BEV map, textual descriptions) as inputs,
and generate the corresponding 3D driving scenes in a feed-forward manner. For better visualization, we render 360-degree rotation
videos for the generated 3D scenes, and stitch frames into panoramic images as shown in (a) and (b). We can see that the styles of the
generated scenes closely match the textual conditions. Besides, when the appearances vary with random seeds, the spatial consistency with
conditional 3D boxes (denoted by colored rectangles in (a) and (b)) is well preserved. Compared to per-scene optimization-based method
MagicDrive3D [53] that leads to artifacts highlighted by red dashed lines in (c), we achieve higher quality with better visual details. Please
consult our supplementary material for comparisons in video format, where we can better observe the differences in visual quality.

icDrive3D [53], which first uses video diffusion model to
generate multi-view video with approximately 100 images,
and then reconstruct the scene based on deformable Gaus-
sians [54]. Such scene-by-scene reconstruction is inefficient
and demands high spatial and temporal consistency from
the generated videos, often failing and introducing noise
or jitter artifacts in the synthetic 3D scenes. As shown in
Fig.6(a)-(b), our generated results exhibit high fidelity and
good diversity, while also ensure consistency with both the
textual and layout conditions. Compared to results from
MagicDrive3D [53] as shown in Fig.6(c), we achieve bet-
ter quality in a much more efficient feed-forward manner.
This demonstrates the potential of Omni-Scene for genera-
tion, pioneering a new approach to multi-modal generation
of 3D driving scenes in a feed-forward manner.

Inputs & GTs Volume-based Pixel-based Full

Figure 7. Ablations on Omni-Gaussian representation. Images
of input views (Inputs) and ground-truth novel views (GTs) are
outlined by orange and blue rectangles, respectively.

Additional Results. Please refer to our supplementary
material for additional results including scene-exploring
videos, runtime analysis, more comparisons, etc.

4.3. Ablation Study

Effectiveness of Omni-Gaussian Representation. The
core of our method lies in the Omni-Gaussian represen-
tation. Therefore, we train two variant models with only
volume or pixel-based Gaussian representation for compar-
isons. By comparing our “Full” method with “Volume-
based” and “Pixel-based” in Table 2, we can see that the
full method with Omni-Gaussian representation surpasses
the two singular representation variants by a large margin.
Without volume-based Gaussian to address object occlu-
sions and frustum truncations, we can observe a perfor-
mance drop of 1.38dB PSNR, 0.038 of SSIM, and 0.02 of
PCC. Removing pixel-based Gaussian which refines details
and reconstructs distant elements, PSNR, SSIM and PCC
will be decreased by 2.06dB, 0.096 and 0.099, respectively.
Such deterioration is more evident in Fig.7. With only
volume-based Gaussian, we observe clear depth boundaries
(i.e., last row, 2nd column of Fig.7) and lack of visual de-
tails (i.e., 1st row, 2nd column of Fig.7), corresponding to
Case 3 and 4 in Fig.2(a). With only pixel-based Gaussian,
we observe noise artifacts in areas occluded or truncated in
2D (3rd column of Fig.7), corresponding to Case 1 and 2 in
Fig.2(a). With the collaboration of the two representations,
our full method can eliminate these artifacts and achieve
best consistency with GTs (4th column of Fig.7). More-
over, we show examples in Fig.2(b)-(e) to further illustrate
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benefits from such collaboration.
Effectiveness of Volume-Pixel Collaboration. As shown
in Table 2, our “Full” method outperforms the variants “Full
w/o feat fuse.” and “Full w/o train decomp.” in terms of all
metrics. This indicates that the collaboration between vol-
ume and pixel-based representations is important in both
the feature encoding stage and the training stage. The
Projection-Based Feature Fusion strategy enables our Vol-
ume Builder to be aware of which areas are already covered
by pixel-based Gaussian, allowing it to better complement
the uncovered areas. The Depth-Guided Training Decom-
position mechanism allows our Volume Builder to focus on
reconstruction within the volume range, while also ensur-
ing the spatial alignment between the volume and the pixel-
based Gaussians, which avoids scale ambiguity. Visual re-
sults can be found in our supplementary material.
Effectiveness of Depth Initialization. We also train
a pixel-based variant model without initializing per-pixel
depths using [46] to investigate the impact of depth initial-
ization on performance. As shown in Table 2, although the
variant “Pixel-based w/o depth init.” can achieve compara-
ble visual quality to the full-version “Pixel-based”, it leads
to a 0.208 drop of PCC. The main reason for this gap is that
the depth initialization can ease the prediction of complex
3D geometries under the ego-centric setting. Visual results
can be found in our supplementary material.

5. Conclusion
We have introduced Omni-Scene, a method with Omni-
Gaussian representation that can reach the best of both pixel
and volume-based Gaussian representations for ego-centric
sparse-view scene reconstruction. Employing designs that
encourage Volume-Pixel collaboration, we achieve high-
fidelity scene reconstruction from only single-frame sur-
rounding observations. Extensive experiments demonstrate
our superiority in ego-centric reconstruction compared
to previous methods. Furthermore, we integrate a 2D
diffusion model into our framework, which enables multi-
modal 3D scene generation with versatile applications.
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Omni-Scene: Omni-Gaussian Representation for
Ego-Centric Sparse-View Scene Reconstruction

Supplementary Material

In this document, we first provide implementation details
including data preprocessing of nuScenes [31] (Sec.6.1),
network architecture and hyperparameters (Sec.6.2). We
follow with additional experiment discussions including in-
troduction to our supplementary videos (Sec.7.1), quanti-
tative comparisons with more baseline methods (Sec.7.2),
runtime analysis (Sec.7.3), more ablations (Sec.7.4), fur-
ther discussions on generalizability to larger bins (Sec. 7.5)
and effectiveness of our Volume-Pixel Collaboration (Sec.
7.6), more qualitative results on scene-centric reconstruc-
tion (Sec.7.7). We strongly recommend to view the accom-
panying video (“video.mp4”), which contains 360-degree
exploring videos of both reconstructed and synthetic scenes,
as well as comparisons with other methods.

6. Additional Implementation Details
6.1. Data Preprocessing

As described in Sec.4.1 of our main manuscript, we par-
tition each scene of nuScenes dataset [31] into equally
spaced bins, with each bin serving as one data sample. For
nuScenes dataset, each video is captured in a single scene
along with the car trajectory. The length of the trajectory
ranges drastically from several meters to hundreds of me-
ters. If we segment the trajectory into bins according to
frame indexes, the spatial ranges of bins would exhibit sig-
nificant variation, which leads to non-IID data distribution
for training and evaluation. To circumvent this issue, we
segment the bins based on the distance traveled by the car as
detailed in Fig.8. Specifically, for videos with a trajectory
length exceeding 3.2 meters, we uniformly segment them
into N bins, each 3.2 meters in length. For each bin, we
use the central frame with 6 surrounding images to derive

Car trajectory in a scene video

3.2m 3.2m 3.2m
bin 0 bin 1 bin N…

~

1st frame central frame last frame

observed views novel viewsnovel views

… …

predict predict

Figure 8. Data preprocessing of nuScenes [31].

the observed input views, and the first and last frames with
12 surrounding images as the novel views. For videos with
a trajectory length less than 3.2 meters, we directly use the
first and last frames of the video as the novel views.

6.2. Network Architecture and Hyperparameters

In Table 3(a), the order from top to bottom are the param-
eters of Triplane Transformer (i.e., number of transformer
layers, embedding dimensions, number of 2D and 3D ref-
erence points used in our cross-image and cross-plane de-
formable attentions, and number of attention heads), Voxel
Decoder (i.e., number of Gaussians decoded for each voxel,
number of linear layers used for decoding Gaussian parame-
ters), Multi-View U-Net (i.e., feature dimensions and patch
sizes of patchified cross attentions [45] used in U-Net down-
sample and upsample blocks), Pixel Decoder (i.e., number
of convolution layers used for decoding Gaussian parame-
ters), respectively. In Table 3(b), we specify loss weights
for Eq.(4) in our main manuscript, which is followed by pa-
rameters used in our training phase.

(a) Network Architecture

2D Image Encoder backbone R50-DINO [42]
neck FPN (P2 only) [55]

Triplane Transformer

# layers 3
# embed dims 128
# 2D ref points 8, 16, 16
# 3D ref points 16, 16, 16
# attn heads 8

Voxel Decoder # Gaussians per voxel 3
# linear layers 3

Multi-View U-Net

# downsample feats 128, 256, 512, 512
# upsample feats 512, 512, 256, 128
# downsample patches 8, 8, 4, 2
# upsample patches 2, 4, 8, 8

Pixel Decoder # conv layers 3

(b) Hyperparameters

Loss Weights # λ1, λ2, λV1
, λV2

0.05, 1.0, 0.05, 0.01

Training Details

learning rate scheduler Cosine
# iterations 100,000
# learning rate 1e-4
optimizer Adam [52]
# beta1, beta2 0.9, 0.999
# weight decay 0.01
# warm-up 1000
# gradient clip 1.0

Table 3. Details of network architecture and hyperparameters. In
the table, “#” denotes numerical parameters. We present parame-
ters that specify our network architecture, and parameters used in
our loss functions and training phase, in (a) and (b), respectively.
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Method Time(s) Param(M) PSNR↑ SSIM↑ LPIPS↓ PCC↑
AttnRend [12] 9.98 125.1 20.96 0.533 0.467 N/A
MuRF [9] 0.672 5.3 20.34 0.504 0.433 -0.332
pixelSplat [13] 0.508 125.4 21.51 0.616 0.372 0.001
MVSplat [14] 0.174 12.0 21.61 0.658 0.295 0.181
Ours 0.088 81.7 24.27 0.736 0.237 0.800

Table 4. Additional quantitative results on ego-centric reconstruction task performed on nuScenes [31]. We bold 1st-place results and
underline 2nd-place results. PCC is not available (N/A) for AttnRend which has no interpretable 3D structure for depth rendering.

7. Additional Experiments

7.1. Video Results

To better demonstrate the quality of 3D reconstruction,
we provide exploring video demos in “video.mp4” along
with our supplementary material. Specifically, given six
surrounding images of a scene, we conduct inference and
obtain 3D Gaussians for reconstructing the scene. Then,
we utilize these Gaussians to render a 360-degree rotation
video at 30fps with the camera FOV set to 70 degree fol-
lowing [31]. In the video, each frame that falls between
the input viewpoints can be considered as a novel view un-
seen in the inputs. To further demonstrate the model’s per-
formance in the presence of object occlusions and frustum
truncations, we move the camera forward and backward by
3 meters in the front and rear view perspectives, respec-
tively, ensuring that there are contents invisible from the
input views. It’s also noted that the camera’s movement
range has reached 6 meters, exceeding the 3.2-meter range
of bin samples seen during training, thereby showcasing the
model’s capability to reconstruct scenes at greater distances.
Comparisons with other methods. We first present com-
parisons with state-of-the-art methods pixelSplat [13] and
MVSplat [14] from 00:00 to 01:40 in “video.mp4”. Our
approach significantly outperforms other methods in both
visual and geometric quality. Notably, due to the mini-
mal cross-view overlap among input views, pixelSplat and
MVSplat fail to predict accurate depths based on pixel-level
3D priors (e.g., epipolar lines, cost volumes), which results
in artifacts in the rendered videos especially when the cam-
era is substantially moved forward and backward.
Exploring videos of reconstructed scenes. Then, we
present more examples to illustrate our functionality on
scene reconstruction. Examples with normal conditions are
shown from 01:41 to 02:49 in “video.mp4”. Examples with
extreme conditions (e.g., low-light, bad weather) are shown
from 02:50 to 03:26 in “video.mp4”. We can see that our
method achieves high-quality reconstruction and maintains
robustness in both normal and hard cases.
Exploring videos of generated scenes. We also present
examples to illustrate our functionality on scene generation
from 03:27 to 05:07 in “video.mp4”. The left side of the
video shows the our generated results given different ran-
dom seeds. The right side of the video shows examples of
MagicDrive3D [53], which are directly adopted from their

official website1. We can see that our method achieves bet-
ter visual details than per-scene optimization-based Magic-
Drive3D in a much more efficient feed-forward manner.

7.2. Comparisons with More Baselines

We also make comparisons with more baseline methods
(i.e., MuRF [9] and AttnRend [12]) for ego-centric sparse-
view reconstruction task. Specifically, MuRF and AttnRend
are feed-forward reconstruction methods based on NeRF
[23] and light field [10], respectively. They are both lead-
ing and representative methods within their respective lines
of works, which constitute the mainstream feed-forward
methods together with 3DGS-based approaches such as pix-
elSplat [13] and MVSplat [14]. As shown in Table 4,
our method surpasses MuRF and AttnRend significantly in
terms of all metrics. We can also observe that methods with
explicit Gaussians as representations (i.e., ours, pixelSplat,
MVSplat) outperform methods with implicit NeRF or light
field as representations (i.e., AttnRend, MuRF), showing
the effectiveness of explicit 3D representation.

7.3. Runtime Analysis

As shown in Table 4, we conduct runtime analysis on
the ego-centric reconstruction task to demonstrate the ef-
ficiency of our method. It’s noted that the inference speed
is reported based on the time cost of six-view reconstruction
averaged by 2,048 times. From the table, we can see that our
method achieves the shortest inference time (i.e., “Time”
in Table 4), which is nearly 2× faster than that of the 2nd
place method MVSplat [14]. We attribute this advantage
to our triplane-based volume feature encoding in Triplane
Transformer, and efficient patchified cross-attention mod-
ule in Multi-View U-Net. Besides, our method is also light-
weight with model size (i.e., “Param” in Table 4) compara-
ble to other methods. Furthermore, we observe that, thanks
to the efficient rendering of 3DGS [24], 3DGS-based meth-
ods (i.e., our method, pixelSplat [13], MVSplat [14]) show
significant superiority in speed compared to methods based
on implicit representations (i.e., MuRF [9], AttnRend [12]).

7.4. Additional Ablations

We present more ablation results to demonstrate the effec-
tiveness of our components.
Qualitative Ablations on Volume-Pixel Collaboration. In

1https://gaoruiyuan.com/magicdrive3d/
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Inputs & GTs w/o train decomp. w/o feat fuse. Ours full

PSNR: 24.84 PSNR: 25.31PSNR: 24.72

PSNR: 23.89 PSNR: 24.39PSNR: 23.53

PSNR: 22.71 PSNR: 23.45PSNR: 22.62

Figure 9. Qualitative ablations on Volume-Pixel Collaboration. Images of input views (Inputs) and ground-truth novel views (GTs) are
outlined by orange and blue rectangles, respectively. The remaining are novel-view images and depths generated by our variant models and
full model. From left to right, the order is the variant without Depth-Guided Training Decomposition, the variant without Projection-Based
Feature Fusion, and our full method. The red dashed lines highlight undesirable artifacts (e.g., noise, over-smooth), while the green ones
denote plausibly-rendered areas (e.g., better and sharper details). We also show PSNR values of the generated images for better comparison.

our main manuscript, we have quantitatively compared our
full method with the two variants without the Volume-Pixel
Collaboration designs (i.e., Projection-based Feature Fu-
sion and Depth-Guided Training Decomposition). Here,
we show additional qualitative results in Figure 9 for vi-
sual comparisons. It can be observed that our full method
can generate images with higher quality and depths with
sharper details, which demonstrate that our collaboration
designs can effectively encourage the complementarity be-
tween pixel-based and volume-based Gaussian representa-
tions, and further improve the performance.
Qualitative Ablations on Depth Initialization. In our
main manuscript, we have quantitatively demonstrate the

effectiveness of depth initialization for our pixel-based
Gaussian representation. Here, we show additional quali-
tative results in Figure 10 for visual comparisons. From the
figure, we can see that, although the depth initialization has
no significant impact on visual quality, it is beneficial for
improving geometric quality. The main reason is that the
depth initialization can ease the learning of complex scene
geometries for our Pixel Decorator that built upon pixel-
based representation. Besides, with the collaboration of
volume-based representation, our full method significantly
surpasses the two variants with only pixel-based representa-
tions both visually and geometrically, further demonstrating
the advantage of our Omni-Gaussian representation.
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Inputs & GTs Pixel-based w/o depth init. Ours full

PSNR: 22.23 PSNR: 23.56PSNR: 22.38

PSNR: 23.89 PSNR: 25.24PSNR: 23.69

PSNR: 22.70 PSNR: 24.12PSNR: 22.39

Pixel-based w/ depth init.
Figure 10. Qualitative ablations on Depth Initialization. The 1st column present images of input views (Inputs) and ground-truth novel
views (GTs). The 2nd and the 3rd columns are results generated by two variant models with only pixel-based representation (i.e., Pixel
Decorator), one with the depth initialization and one without. The last column denote results generated by our full method. The red dashed
lines highlight undesirable artifacts, while the green ones denote plausibly-rendered areas. PSNR values are shown for better comparison.

Ablations on Deformable Attentions. As described
in Sec.3.1 of our main manuscript, we employ cross-
image and cross-plane deformable attentions in our Vol-
ume Builder to enhance volumetric feature encoding. Given
camera parameters (i.e., intrinsics and extrinsics) that en-
able 3D-to-2D projection, our cross-image deformable at-
tention module can lift 2D features to the 3D volume space,
which enables the prediction of 3D Gaussians directly at
the 3D level. This differs from previous methods [13, 14]
that require cross-view overlap to estimate per-pixel depths
and predict 3D Gaussians at the 2D level. To further ad-
dress the issue that some elements in 3D might be occluded
or truncated for any of the 2D input views, we utilize our
cross-plane deformable attention to enhance each triplane
query with cross-plane context, which means information
absent in one plane can be complemented by those from

other planes at the 3D level. To validate the effectiveness of
such dual-path design, we train three Volume Builder mod-
els, where one contains both of the cross-image and cross-
plane attentions, while the other two contain only one of
the attentions. As demonstrated in Table 5 and Fig. 11,
the model with both attentions significantly outperforms the
other two variants, showing the importance of such dual-
path feature encoding to our Volume Builder. We further
compare these volume-only variants with our full method

cross-image cross-plane PSNR↑ SSIM↑ LPIPS↓ PCC↑
✗ ✓ 14.29 0.428 0.578 0.539
✓ ✗ 21.29 0.595 0.412 0.686
✓ ✓ 22.21 0.640 0.357 0.701

Table 5. Ablations on cross-image & plane deformable attentions.
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Inputs & GTs Volume-based
w/o cross-img attn. Ours fullVolume-based

w/o cross-plane attn.

PSNR: 14.41

PSNR: 15.34

PSNR: 15.05

PSNR: 20.95

PSNR: 20.91

PSNR: 21.18

PSNR: 21.72

PSNR: 21.77

PSNR: 21.90

PSNR: 23.72

PSNR: 23.47

PSNR: 23.57

Volume-based

Figure 11. Qualitative ablations on deformable attentions. The 1st column present images of input views (Inputs) and ground-truth novel
views (GTs). The 2nd to 4th columns are results generated by three variant models with only volume-based representation (i.e., Volume
Builder), one without the cross-image deformable attention (“cross-img attn.”), one without the cross-plane deformable attention (“cross-
plane attn.”), and one with both of the attentions. The last column denote results generated by our full method. The red dashed lines
highlight undesirable artifacts, while the green ones denote plausibly-rendered areas. PSNR values are shown for better comparison.

in Fig. 11. It’s observed that results generated by our full
method are with better details, showing the effectiveness of
our Omni-Gaussian representation.

7.5. Generalizability to Different Bin Sizes

Unless otherwise specified, our experiments are conducted
with a bin size of 3.2m as stated in Sec.6.1. To validate
whether our method can be generalized to synthesize novel
views at farther or closer distances, we preprocess nuScenes
[31] into three variants with different bin sizes (i.e., 1.6m,
6.4m, 12.8m) from our original dataset. Here we note that,
the larger the bin size, the farther distance between the novel
and the input views, which is more challenging for novel
view synthesis. Practically, for each dataset variant, we
employ two approaches to test our model: (1) The model

trained under a bin size of 3.2m is directly used for evalu-
ation without additional fine-tuning. (2) The model is fur-
ther fine-tuned with the new bin size for 50,000 steps before
evaluation. As can be seen from the 3rd, 5th and 7th rows of
Table 6, despite the lack of supervision, our method exhibits
minor degradation in performance for novel view synthesis
at farther distances. For instance, we observe only 1.38 dB
drop of PSNR, and 0.009 drop of PCC for “bin size = 6.4m”,
which denotes distances 2× farther than those seen during
training. As can be seen from the 4th, 6th, and 8th rows
of Table 6, by fine-tuning the model on data renewed with
different bin sizes, we can further boost the performance
and bring novel view synthesis at farther distances (i.e., “bin
size = 6.4m, 12.8m”) very close to the results obtained un-
der the original setting of “bin size = 3.2m”.
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bin size fine-tuning PSNR↑ SSIM↑ LPIPS↓ PCC↑
3.2m – 24.27 0.736 0.237 0.800

1.6m ✗ 25.12+0.85 0.771+0.035 0.208−0.030 0.804+0.004

✓ 25.37+1.10 0.783+0.047 0.201−0.037 0.806+0.006

6.4m ✗ 22.89−1.38 0.682−0.054 0.287+0.050 0.791−0.009

✓ 24.15−0.12 0.729−0.007 0.239+0.002 0.797−0.003

12.8m ✗ 21.57−2.70 0.640−0.096 0.346+0.109 0.771−0.029

✓ 23.55−0.72 0.711−0.025 0.265+0.028 0.792−0.008

Table 6. Results of our method when generalized to different bin sizes with or without additional fine-tuning.
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Figure 12. Additional examples of Volume-Pixel Collaboration. The red dashed lines highlight artifacts caused by weaknesses of singular
representations, while the green ones outline how the artifacts are eliminated through Volume-Pixel Collaboration.

7.6. Discussion on Volume-Pixel Collaboration

In Fig.2 of our main manuscript, we have showcased pros
and cons of the pixel-based and the volume-based Gaus-
sian representations, and have provided the corresponding
examples to illustrate how the two representations comple-
ment for each other in our unified model with the proposed
Omni-Gaussian representation. Here, we present more ex-
amples in Fig.12 to demonstrate the effectiveness of their
collaboration case by case:
• In “Case 1” of Fig.12, when objects in the novel view

are occluded in the input views, pixel-based representa-
tion focuses on the non-occluded areas, with the occluded
parts supplemented by volume-based representation.

• In “Case 2” of Fig.12, when objects in the the novel view
fall beyond the frustum range for any of the input views,
pixel-based representation focuses on the non-truncated
areas, with the truncated parts supplemented by volume-

based representation.
• In “Case 3” of Fig.12, for distant elements out of the vol-

ume range, volume-based representation concentrates on
reconstruction within the volume, leaving the reconstruc-
tion of distant elements to pixel-based representation.

• In “Case 4” of Fig.12, for objects with fine-grained de-
tails (e.g., cars, lane markings), volume-based represen-
tation aims to predict their coarse 3D structures, leaving
the surface details to pixel-based representation.

7.7. Additional Comparisons on RealEstate10K

As shown in Fig.13, we present more qualitative com-
parisons with state-of-the-art methods pixelSplat [13] and
MVSplat [14] on RealEstate10K [32], a large-scale dataset
for scene-centric reconstruction task. We can see that our
method can render novel view images and depths with com-
parable and even superior quality to other methods.
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Inputs GTs pixelSplat MVSplat Ours

Figure 13. Additional qualitative results on scene-centric reconstruction performed on RealEstate10K [32]. The first two columns are
images of input views and ground-truth novel views. The remaining three columns are results generated by pixelSplat [13], MVSplat [14]
and our method, respectively. The red dashed lines highlight undesirable artifacts, while the green ones denote plausibly-rendered areas.
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